An Inverter is a device that converts 12 volts d.c to 120 volts a.c. ,
which is what we use in our homes. This project will handle about 300
watts, which is perfect for lights, small T.V.'s and radio equipment.
This Inverter takes 12 volt d.c and steps it up to 120 volt a.c. The wattage depends on which transistors you use for Q1 and Q2, as well as the "Amp Rating" of the transformer you use for T1. This inverter can be constructed to supply anywhere from 1 to 1000 (1 KW) watts. If Q1, Q2 are 2N3055 NPN Transistors and T1 is a 15 A transformer, then the inverter will supply about 300 watts. Larger transformers and more powerful transistors can be substituted for T1, Q1 and Q2 for more power. Note: Don't try to run inductive loads (motors...) off this inverter.
This Inverter takes 12 volt d.c and steps it up to 120 volt a.c. The wattage depends on which transistors you use for Q1 and Q2, as well as the "Amp Rating" of the transformer you use for T1. This inverter can be constructed to supply anywhere from 1 to 1000 (1 KW) watts. If Q1, Q2 are 2N3055 NPN Transistors and T1 is a 15 A transformer, then the inverter will supply about 300 watts. Larger transformers and more powerful transistors can be substituted for T1, Q1 and Q2 for more power. Note: Don't try to run inductive loads (motors...) off this inverter.
12 Vdc - 120 Vac Inverter Circuit Diagram
Parts:
C1, C2 68 uf, 25 V Tantalum Capacitor
R1, R2 10 Ohm, 5 Watt Resistor
R3, R4 180 Ohm, 1 Watt Resistor
D1, D2 HEP 154 Silicon Diode
Q1, Q2 2N3055 NPN Transistor (see "Notes")
T1 24V, Center Tapped Transformer
Misc. Wire, Case, Receptacle (for output)
Fuses, Heatsinks, etc.
Caution: This circuit can cause serious injury or death. Keep away from children.
0 comments:
Post a Comment